	S3 Revision - Arcs and Sectors of a circle		
1		The diagram shows a sector of a circle with a centre C. The radius of the circle is 7.4 centimetres. Calculate the length of arc AB.	3
2		The diagram shows a sector of a circle with a centre C. The radius of the circle is 6.5 centimetres. Calculate the area of the minor sector ACB.	3
3		The diagram shows a sector of a circle with a centre C. The radius of the circle is 7.3 centimetres and angle PCR is 54° Calculate the length of the arc PR.	3

4	The diagram shows part of a circle with centre 0 . The radius of the circle is 6.4 centimetres. The centre angle ACB is 280° Calculate the area of sector AOB.	
		3
5	The diagram shows a sector of a circle with a centre C. The radius of the circle is 20 centimetres. The centre angle ACB is 45° Without a calculator find the length of arc AB . Use $\pi=3.14$.	3
6	The diagram shows a sector of a circle with a centre 0 . The centre angle is 140°. Arc $A B$ has a length of 73 cm Find the size of the radius $O A$.	4
	19 marks	

	Arcs and Sectors - Answers	19
1	Mark 1 State the fraction of the circle $\frac{320}{360}$ Mark 2 Substitute into arc length formula $\frac{320}{360} \times \pi \times 2 \times 7.4$ Mark 3 Calculate length of arc $A B$ $\mathbf{4 1 . 3 ~ c m}$ 2 marks will be given for finding the area of the sector $\frac{320}{360} \times \pi \times 7.4^{2}=152.9 \mathrm{~cm}^{2}$	3
2	Mark 1 State the fraction of the circle $\frac{110}{360}$ Mark 2 Substitute into area formula $\frac{110}{360} \times \pi \times 6.5^{2}$ Mark 3 Calculate area of sector ACB $\mathbf{4 0 . 6} \mathbf{c m}^{2}$ 2 marks will be given for finding the arc length $\frac{110}{360} \times \pi \times 13=12.5 \mathrm{~cm}$	3
3	Mark 1 State the fraction of the circle $\frac{54}{360}$ Mark 2 Substitute into arc length formula $\frac{54}{360} \times \pi \times 2 \times 7.3$ Mark 3 Calculate the length of arc PR $\mathbf{6 . 8 8} \mathbf{~ c m}$ 2 marks will be given for finding the area of the sector $\frac{54}{360} \times \pi \times 7.3^{2}=25.11 \mathrm{~cm}^{2}$	3
4	Mark 1 State the fraction of the circle $\frac{280}{360}$ Mark 2 Substitute into area formula $\frac{280}{360} \times \pi \times 6.4^{2}$ Mark 3 Calculate area of sector AOB $\mathbf{1 0 0} \mathbf{~ c m}^{2}$ 2 marks will be given for finding the length of arc AB $\frac{280}{360} \times \pi \times 12.8=31.3 \mathrm{~cm}$	3
5	Mark 1 State the fraction of the circle and simplify $\frac{45}{360}=\frac{1}{8}$ Mark 2 Substitute into arc length formula $\frac{1}{8} \times 3.14 \times 2 \times 20$ Mark 3 Calculate the length of arc $A B$ $5 \times 3.14=\mathbf{1 5 . 7} \mathbf{c m}$ 2 marks will be given for finding the area of the sector $\frac{1}{8} \times 3.14 \times 20^{2}=157 \mathrm{~cm}^{2}$	3
6	Mark 1 State the fraction of the circle Mark 2 Make an equation with fraction and arc length Mark 3 Calculate the length of the diameter Mark 4 Calculate the length of the radius $\begin{aligned} & \frac{140}{360} \\ & 73=\frac{140}{360} \times \pi \times D \\ & D=73 \times 360 \div 140 \pi=60 \mathrm{~cm} \\ & \text { radius is } 30 \mathrm{~cm} \end{aligned}$ 3 marks will be given if sector are is used $73=\frac{140}{360} \times \pi \times r^{2}, r^{2}=60, r=7.7 \mathrm{~cm}$	

